Quantcast
Channel: Solving a polynomial equation with a condition of equality on roots - Mathematica Stack Exchange
Viewing all articles
Browse latest Browse all 5

Answer by Daniel Lichtblau for Solving a polynomial equation with a condition of equality on roots

$
0
0

Could do

Solve[{x^3 - p x^2 + q x - r == 0, r1 + r2 + r3 == p, r1 == r2,   r1*r2 + r1*r3 + r2*r3 == q, r1*r2*r3 == r}, {r1, r2, r3}, {x, p}]

The requirement of a double root places a relation on {p,q,r}, so I chose to eliminate p. An alternative is to solve for one of them e.g. p, or to do

Solve[{x^3 - p x^2 + q x - r == 0, r1 + r2 + r3 == p, r1 == r2,   r1*r2 + r1*r3 + r2*r3 == q, r1*r2*r3 == r}, {r1, r2, r3}, {x},  MaxExtraConditions -> 1](* {{r1 -> ConditionalExpression[(p q - 9 r)/(    2 (p^2 - 3 q)), -p^2 q^2 + 4 q^3 + 4 p^3 r - 18 p q r + 27 r^2 ==      0], r2 ->    ConditionalExpression[(p q - 9 r)/(    2 (p^2 - 3 q)), -p^2 q^2 + 4 q^3 + 4 p^3 r - 18 p q r + 27 r^2 ==      0], r3 ->    ConditionalExpression[(p^3 - 4 p q + 9 r)/(    p^2 - 3 q), -p^2 q^2 + 4 q^3 + 4 p^3 r - 18 p q r + 27 r^2 == 0]}} *)

Viewing all articles
Browse latest Browse all 5

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>